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We investigate correlation inequalities for Ising ferromagnets with con- 
tinuous spins, giving a simple unified derivation of inequalities of Griffiths, 
Ginibre, Percus, Lebowitz, and Ellis and Monroe. The single-spin measure 
and Hamiltonian for which an inequality may be proved become more 
restricted as the inequality becomes more complex. However, all results 
hold for a model with ferromagnetic pair interactions, positive (nonuniform) 
external field, and single-spin measure v either v ( e ) =  [1/(l + 1)] x 
~ = 0  8 ( - 1  + 2j + ~) (spin l/2) or dr(a) = exp[-P(a) ]  d~, where P is an 
even polynomial all of whose coefficients must be positive except the 
quadratic, which is arbitrary. The Lebowitz correlation inequality is a 
corollary of the Ellis-Monroe inequality. As an application, we generalize 
the method of van Beijeren to establish a sharp phase interface at low 
temperature in nearest neighbor ferromagnets of at least three dimensions 
with arbitrary (symmetric) single-spin measure. 
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1. I N T R O D U C T I O N  

In  this  p a p e r  we inves t iga te  c o r r e l a t i o n  inequa l i t i e s  fo r  f e r r o m a g n e t i c  I s ing  

m o d e l s  w i t h  c o n t i n u o u s  spins.  T h e s e  c o n t i n u o u s - s p i n  mode l s ,  wh ich  we  

desc r ibe  fu l ly  at  t he  c lose  o f  t he  i n t r o d u c t i o n ,  gene ra l i ze  the  c lass ical  spin-�89 

I s ing  m o d e l s  in t h a t  t he  spin  v a r i a b l e  is n o t  r e s t r i c t ed  to  the  two  va lues  _+ 1 

b u t  ins t ead  m a y  a s s u m e  any  rea l  va lue  wi th  s o m e  a p r io r i  s ingle-spin  w e i g h t i n g  

measu re .  Such  I s ing  m o d e l s  can  be  used  to  r ep re sen t  m a n y  phys ica l  s i tua t ions .  
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In particular, they rigorously approximate scalar quantum field theories in the 
Euclidean region (lattice approximation(2~ and inequalities proved for con- 
tinuous-spin models yield analogous inequalities for the more singular models 
of scalar quantum fields. 

In Section 2 we give a simple unified derivation of many correlation 
inequalities for continuous-spin Ising ferromagnets, obtaining them for a 
large class of single-spin weighting measures. These inequalities were estab- 
lished in various special cases by Griffiths, (9~ Ginibre, (7~ Percus, c19~ Ellis and 
Monroe, (4~ Lebowitz, (17~ and Griffiths et al. (~3~. Although the single-spin 
measure and Hamiltonian for which an inequality may be proved become 
more restricted as the inequality becomes more complex, all inequalities hold 
for a model with ferromagnetic pair interactions, positive (nonuniform) 
external field, and single-spin measure either 

1 l 
dr(or) = l +-----1 ~ 8 ( -  l + 2j + or) (spin l/2) 

j = 0  

or dr(or) = exp[-P(a)]  da. Here P is an even polynomial all of whose coeffi- 
cients must be positive, except the quadratic, which is arbitrary. (Recent work 
by Ellis and Newman (6~ elegantly relaxes this condition on P: it need only 
be an even differentiable function whose derivative is convex on [0, ~).)  We 
exhibit interrelationships among these inequalities, deriving the Lebowitz in- 
equality from the Ellis-Monroe inequality in the same way the second 
Griffiths inequality may be derived from the Ginibre inequality. The Griffiths- 
Hurst-Sherman inequality for concavity of magnetization is a corollary of 
the Lebowitz correlation inequality, as is an inequality which at zero external 
field shows the fourth Ursell function u4 is negative. 

In Section 3 we briefly discuss the need for the restrictions in the hy- 
potheses of the theorems proved in the previous section. We conclude by 
combining the methods and results of Section 2 with the general theorem on 
phase transitions in Refs. 2 and 22 to extend the work of van Beijeren ~ on 
sharp phase separation to the case of arbitrary (symmetric) single-spin 
measure. 

This paper is somewhat in the nature of a review, since to exhibit unity 
of method we have included proofs of some known results which fit naturally 
into our scheme. In accord with this partly expository character, but with no 
attempt at completeness, we now make some short historical remarks on the 
inequalities of Section 2 and mention a few of their applications. For a more 
thorough review, see Refs. 11, 12, 17, 20, 22, and references therein. 

Theorem 2.1 and Corollary 2.1, the Griffiths inequalities, were obtained 
(in a slightly weaker form) by GriffithsCg~ for spin-�89 spins, pair interactions, 
and positive external field. They were strengthened and generalized to the 
case of polynomial interactions by Kelly and Sherman (14~ and extended to 
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higher discrete spins and certain continuous spins by Griffiths. (1~ Theorem 
2.2 is due to GinibreF ~ with Theorem 2.1 and Corollary 2.1 as corollaries. 

Well-known (1~,~2,~7'2~ applications of the Griffiths inequalities include 
the construction and shape independence of the infinite-volume limit of spin 
expectations, monotone increase of the spin expectations in the couplings of 
the Hamiltonian, and persistence of phase transitions when couplings are 
added or increased. 

Theorem 2.3 was proved for spin-�89 models by Percus. (~) Corollary 2.3, 
the Lebowitz correlation inequality, was obtained for spin-�89 models by 
Lebowitz, ~1~) with the G.H.S. inequality (Corollary 2.4) as a special case. It 
was in a paper devoted to this inequality that Ellis and Monroe (4) established 
Theorem 2.4 for spin-�89 spins by means of Gaussian random variables, 
though it appeared in a somewhat different guise. The proof was simplified 
and extended to continuous spins {having single-spin measure exp[-P(a)]  da, 
P even, with all coefficients but the quadratic positive} independently by Ellis 
(Ref. 3 and later work, Refs. 5 and 6) and the present author. Derivation 
of the Lebowitz correlation inequality (Corollary 2.3) as a corollary is new 
here. 

Among the many applications of these results, we mention that the 
G.H.S. inequality yields concavity of magnetization, (~3~ monotone decrease 
of the correlation length in the external field, (~6~ absence of a phase transition 
except at zero external field for models with pair Hamiltonians, (~8) and in- 
equalities among the lowest three eigenvalues of the anharmonic oscillator. (6, 20) 
The Lebowitz correlation inequality, which is closely related to the Gaussian 
inequality of Newman, C~8) has been used to bound expectations and correla- 
tions of many spins in terms of expectations and correlations of pairs of 
spins. (8~, Such bounds may be used, for example, to simplify the construction 
of the infinite-volume limit, (8,22) and in quantum field theory, to show that the 
r theory has no even bound states. (21~ 

We conclude our introductory remarks with a formal definition of a 
finite, continuous-spin ferromagnetic Ising model. A finite, continuous-spin 
Ising ferromagnet is a triple (A, H, v), where: 

1. The set of sites A is a finite set. We associate with each site i c A a 
real spin variable ~ c E; the product ] ~ A  E is called the configuration space. 

2. The Hamiltonian H is a polynQmial on the configuration space, and 
the ferromagnetism assumption is that H has nonpositive coefficients. We 
write 

H(a) = -  ~ JK~K, S~ >t 0 (1) 
K~Fo(A) 

where the coefficients JK are called couplings (or bonds), Fo(A) is the set of 
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finite families (" sets" with repeated elements) in A, and ~ is by definition 
the product 

3. The single-spin measure v is an even Borel probability measure on R 
which decays sufficiently rapidly that if d = deg(H) is the degree of the 
polynomial H, 

~ exp(al~l a) dv(~r) < oo Va ~ R (2) 

The linear term - Y.~A J~cr~ in H is commonly thought of as describing the 
effect of an external magnetic field, while higher order terms are considered 
to arise from the mutual interactions of the spins. We usually recognize this 
distinction by writing - Y~A hi~ in the Hamiltonian in place of - ~ A  J~a~. 
A pair interaction is a Hamiltonian of degree two. 

The Gibbs measure /z of (A, H, v) is the probability measure on the 
configuration space 1-I~a R defined by 

J; ~(E) = Z -1. exp[-flH(e)l i--[ dv(~0, E c I-IA N measurable (3) 

Here fl = 1/kT ~ [0, oo) is the inverse temperature and Z the partition function 

Z = f exp[-flH(~)] 1--[ dv(~,) (4) 
J I I  AN ~ A  

We indicate (thermal) expectations with respect to the Gibbs measure at 
inverse temperature fl by angular brackets ( ; H, v, fl), omitting the descrip- 
tive arguments H, v, fl when they are clear from context: 

H,v,  fl> = ( f>  = f f d t z = Z - ' f  fe  - B H ~ d v  (5) (f; 
�9 ~II A~ JII AR A 

Physically, the sites A may be interpreted as the positions of atoms in a 
crystal, and the spin variable o~ at each site i ~ A as a classical version of the 
quantum mechanical spin associated with the atom at i. The single-spin 
measure is a temperature-independent'weight determined by internal proper- 
ties of the atoms. A point a in the configuration space 1-~A R corresponds to 
a state of the system, and H(a) is the energy of that state. If  we allow the 
crystal to exchange energy with a large heat bath at inverse temperhture fl, 
the equilibrium state will be described by the canonical ensemble. Roughly 
speaking, this means that the probability of finding the system in some subset 
E c !-IA ~ of the configuration space is given by the Gibbs measure tz(E). 
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2. BASIC INEQUALIT IES  

We now state and prove the inequalities for ferromagnetic Ising models 
mentioned in Section 1. The proofs employ the method of  duplicate variables. 
Consider a finite ferromagnetic Ising model (A, H, v). It is convenient to take 

A = {1, 2,..., N} 

so that the spin variables are ~1, o2 ..... ou. Construct the doubled system 
(A Q A, H Q H, u), where A �9 A is the disjoint union of two copies of A, 
the 2N spin variables are ~1, ~2 ..... oN, ~1, 72,..., r r ,  and the Hamiltonian 
H G H is H ( ~  ..... crN) + H(~-I,..., ~N). Thus, the doubled system consists of 
two copies of the original model that do not interact with each other. Define 
the transformed variables 

t, = (1/V'2)(e, + r0, q~ = (1/a/2)(cr, - ~'0, i E A (6) 

where the 1/~/2 factors merely serve to make the transformation orthogonal. 
Construct also a redoubled system (A O A Q A Q A, H O H Q H Q H, v) 
composed of  four noninteracting copies of the original, with spins ~ ..... crn, 
rl, . . . ,  ~'N, cq', .... crN', rl ',..., ~'N', and the Hamiltonian H(cq ..... ~N) + 
H(~-I ..... ~'N) + H(~I', .... crN') + H(zl' , . . . ,  rN'). As before, define 

t, = (1/V2)(~, + r,), q, = (1 / a /2 ) (o , -  ~-,) 
(7) 

ti' = (1/~/2)(a,' + z,'), q,' = (1/~/2)(cr,' - ~-,'), i ~ A 

Now set 

c~, = (1/~r + fi'), fl, = (1 /~ /2 ) ( t , -  t,') 
(8) 

~,, = (1/a/2)(q~' + q,), 3, = (1/V'2)(q,' - q,), i ~ A 

Note the reversal of primes between a, fl and y, 3. 
With this notation we have the following theorems: 

T h e o r e m  2.1 (First Griftiths Inequality). Let A e Fo(A) be a family of 
sites in a finite Ising ferromagnet (A, H,  v) with Hamiltonian 

H = -  ~ JKo'/c, J r> /O 
K~Fo(A) 

and arbitrary (even) single-spin measure v. Then 

(aa)  /> 0 (9) 

T h e o r e m  2.2 (Ginibre Inequality). Let A, B ~ Fo(A) be families of sites 
in a finite Ising ferromagnet (A, H, v) with Hamiltonian 

H = -  ~ JK~K, Jic~>0 
KEFo(A) 
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and arbitrary (even) single-spin measure v. Then 

<qAtB> >1 0 (10) 

where q, t are defined by (6). 

Co ro l l a ry  2.1 (Second Griffiths Inequality). Let 
families of sites in the model of Theorem 2.2. Then 

(e/OJ.)<~A> ----- <OA~.> -- <Or.><%> >/ 0 (1 1) 

Theorem 2.3 (Percus Inequality). Let A ~ Fo(A) be a family of sites in 
a finite Ising model (A, H, v) with pair Hamiltonian 

H = - ~  J, sai% - ~ hi<r,, Jis >1 0 and h, arbitrary 

and arbitrary (even) single-spin measure v. Then 

<qA) t> 0 (12) 

where q is defined by (6). 

Coro l l a ry  2.2. Let i, j be sites in the model of Theorem 2.3. Then 

(~/~hD<.,> --- < ~ j >  - <~><<,s> /> 0 (13) 

Theorem 2.4 (Ellis-Monroe Inequality). Let A,B,C,D ~ Fo(A) be sites 
in a finite Ising ferromagnet (A, H, v) with pair Harniltonian 

h,>_-o 
i ~<,r," 

and single-spin measure v either discrete and of the form 

~ ~ 8 ( - l  + 2j + e) spin (14a) 
j = 0  

or continuous and of the form 

d~(,D = e x p [ - e ( , , ) ]  d~/f~ e x p [ - P ( s ) l  ds (14b) 

where P is an even polynomial whose leading coefficient is positive, whose 
quadratic and constant coefficients are arbitrary, and whose remaining 
coefficients are nonnegative. Then 

<aAp3ByC3O> >>- 0 (15) 

where ~,/7, e, and 3 are defined by (8). 

A,B ~ F0(A) be 
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Corollary 2.3 (Lebowitz Correlation Inequality). Let A , B  ~ Fo(A) be 
families of sites in the model of Theorem 2.4. Then 

<tAts> - <tA>(tB> >>- 0 (16a) 

<q~qB> -- (qA>(q~> >1 0 (16b) 

(tAqB> -- (tA>(q~> <. 0 (16C) 

where t, q are defined by (6). 

Corollary 2.4 (Griffiths-Hurst-Sherman Inequality). Let i, j, k be sites 
in the model of Theorem 2.4. Then 

--- < ~ j ~ >  - < ~ > < ~ j ~ >  - < , ~ j > < ~ >  - <~><~,~j> + 2<~><~;><,~> ~< 0 

(17) 

C o r o l l a r y  2.5. Let i , j ,  k , / b e  sites in the model of Theorem 2.4. Then 

- @,cr,>(%ak> + 2(cr,)(%>(%)(ch> ~< 0 (18) 

The proofs of Theorems 2.1, 2.2, and 2.4 all proceed similarly, by reduc- 
tion to the case of a model with a single site and zero Hamiltonian. The 
inverse temperature/3 is inessential and we set it equal to one. We must show 
that a thermal expectation 

<f> = f fe-"l-I a /f e-Hl-l 
is nonnegative. The partition function in the denominator is positive, so we 
ignore it. We first verify that in the transformed variables, the Hamiltonian 
is a polynomial with nonpositive coefficients. Expanding e - z  in its Taylor 
series, we obtain a sum with nonnegative coefficients of integrals of products 
of the transformed variables against the product of the single-spin measures. 
Since each integral factors over the sites, it suffices to show that for a single 
site the integral of any product of the transformed variables is nonnegative; 
that is, that the theorem holds for one-site models with zero Hamiltonian. 
This is what we do. In the proof  of Theorem 2.3 the reduction cannot proceed 
quite as far, but essentially the same method prevails. This reduction makes 
it clear that in all our results we could allow a different single-spin measure 
at each site, though such models are not commonly studied. Corollary 2.3 
follows from Theorem 2.4 just as Corollary 2.1 follows from Theorem 2.2. 
Corollary 2.2 and Corollaries 2.4, and 2.5 are important special cases of  
Theorem 2.3 and Corollary 2.3, respectively. 
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Proofs 

Theorem 2.1 (Proof). We want to show 

fR N ~a exp(K~v~0~A ) JK~c) dv(~l)...dv(~)>~O (19) 

By expanding the exponential in its Taylor series and factoring the integrals 
over the sites as described in the previous paragraph, we reduce the problem 
to showing 

~ " &('O /> 0 Vn (20) 

By the symmetry of v this vanishes when n is odd, and when n is even the 
integrand is nonnegative. QED 

Theorem 2.2 (Proof) .  In terms of the transformed variables q and t 
the total Hamiltonian H(e) + H(~-) is 

This is a polynomial in the t's and q's with nonpositive coefficients, because 
when we expand the product Hk~K (tk -- qk) any negative term which appears 
is canceled by the corresponding term from the expansion of ~k~: (tk + qk). 
Now by expanding the exponential and factoring the integrals over the sites 
we reduce the problem to showing 

f tmq" dv(~) dv('r) >1 0 Vm, n (22) 
2 

This vanishes by symmetry unless n and m are both even, in which case the 
integrand is nonnegative. QED 

Theorem 2.3 (Proof) .  The transformation (6) is orthogonal, so in 
terms of the transformed variables q and t the Hamiltonian H(a) + H(~-) is 

- ~ J,j(q~q, + t,tj) - 21'2 ~ h,h (23) 

We want to show 

~2 q a e x p ( ~  J,,q,q,)exp(~ JJ, t ,+21/Z~h,h)  

x dv(~r~) dv(rz) ... dv(eN) av(rN) >t 0 (24) 
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By expanding the first exponential exp(~i.<j Jijq~qy), we see that it suffices to 
show 

N 

f~N (kI~_-i [qk]%)exp(,.<~j J, yt~tj + 21/2 ~ hJi) dr(%). . ,  dv(rN) >~ O (25) 

for all possible exponents nk. But this integral vanishes by symmetry unless 
all the nk are even, in which case the integrand is positive. QED 

Theorem 2.4 (P roof ) .  The transformation (8) is orthogonal, so in 
terms of the transformed variables c~,/3 y, and 8 the total Hamiltonian H(a) + 
H(r) + H(a') + H(r')  is 

- ~ Ji,(o',% +/3,/3j + Y~Ys + 8,8j) - 2 ~ h,~, (26) 
i~<j" i 

Since this is a polynomial with nonpositive coefficients, by expanding the ex- 
ponential and factoring the integrals over the sites we reduce the problem to 
showing 

fa  2 ~k/3'ymSn dr(a) dr(r) dv(a') dv(r') >1 0 Vk, l, m, n (27) 

By symmetry (27) vanishes unless k, l, m, and n all have the same parity. 
When this parity is even the integrand is nonnegative, so we restrict our 
further attention to the case of odd parity. At this point we distinguish 
between discrete and continuous spins. 

In the discrete case it suffices to consider spins of �89 

v(a) = �89 + 1) + 8(e - 1)] (28) 

for since our transformation of variables is linear the Griffiths "analog 
system" method (1~ may be applied to generate the higher spin results from 
the spin-�89 case. (The analog system method represents a higher spin by a 
sum of spins o f}  in a suitably enlarged model.) Because the exponents k, l, m 
and n are all odd, we may factor out c,/378: 

O~k[~irm an = (O~tC - l [~l - lyre- l an - 1)0c/3y a (29) 

The first factor is nonnegative since it has even exponents. The second factor 
is also nonnegative: since e = --" r = = e '= = r '= for spins of �89 we find 

 /3ra = �88 - e ' r  > o (3o) 

In the continuous case our problem is to show 

f=, ~/3'rma ~ exp[-P(e)  - P(r) - P(e') - P(r')] de dr de' dr' >1 0 (31) 
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for odd k, l, rn, n. We claim that when p(cr) + ... +P(T ' )  is expressed in terms 
of ~,/3, ~,, and 3 it has the special form 

P(a)  + ... +P (T ' )  : Q(c~ 2, f12, y2, 82) _ a/3ySR(a2,/32, y2, 8z) (32) 

where Q and R are polynomials with nonnegative coefficients, except possibly 
for the coefficients of ~2/32, ~,2, and 82 in Q. Temporarily accepting this claim, 
and recalling that transformation (8) is orthogonal, we see that the integral 
(31) becomes 

f a ~ ... 8" exp[~/S98R(a 2 82) - Q(a 2 82)1 da ..- d8 (33) 
' t  

Replacing a by -c ,  and averaging gives 

a, (c~ ~- 1/3z- 17m - 18 ~- ~){~/3~,8 sinh [~/3y~R(~z 2 82)]} 

x exp[ -  a(c~2,..., 82)] d~ ..- d8 (34) 

The first factor, in parentheses, is nonnegative because it has even exponents; 
the second factor, in braces, is nonnegative because R(a2,..., 82) >/0; the 
third factor is obviously nonnegative. 

It remains only to verify claim (32). It suffices to consider the case of a 
monomial, P ( X )  = X 2p. Expanding with the multinomial theorem gives 

o "2p -'l- T 2~ + , 2 p  + ~.,2~ 

2 + c ~ + B -  Y +  

(2p) t 
= 2-~v ~ a! b! c v d! 

a + b + c + d = 2 ~  

x [ ( -1)  a + ( - 1 )  c + ( - 1 )  ~ + (-1)a+c+b]a"/~bT~Sd (35) 

The coefficient of a~/367~Sa vanishes unless a, b, c, and d all have the same 
parity; it is positive when this parity is even, and, it is negative when the 
parity is odd. This observation immediately yields claim (32). Q E D  

Coro l l a ry  2.1 (P roof ) .  We want to show 

( ~ . ~ )  - ( ~ ) ( ~ . )  ~ o 
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Using the doubled system, we find 

(36) 

This is the expectation of a polynomial in the q's and t's, which may be shown 
to have nonnegative coefficients just as (21) was shown to have nonpositive 
coefficients. By Theorem 2.2 this expectation is nonnegative. Q E D  

Corol lary 2.2 (Proof) .  Corollary 2.2 is a special case of Theorem 2.3: 

0 <~ (q,qs) = ((r~crs) - (~ ) (%)  (37) 

Corol lary 2.3 (Proof) .  We want to show 

(tAtB) -- ( tA)( tB)  >>- 0 

(qAqB) -- (qA)(qB) >1 0 

( tA)(qB) -- (tAqB) >1 0 

Using the redoubled system, we have 

(tAtB) -- ( tA)( tB)  

= (tAtB_ tAtB,) = / i e ~ +  ~ r icz+/3~ (c~_ fl) ] )  \t--~T]At--~TI~- ~ .  (38a) 

(qaqB) - (qA)(qB) 

= (qA'q,'  -- qA'q,) = ~ t - - ' Q ' ~ ]  ~ Lt---V-g-]. - ~ ,  (38b) 

( tA)(qB) -- (tAqB) 

/ i  + + q - = ( t a q s ' - - t A q , ) = \ \  < 2  ] A [ t  ~/2 ] ~ - ( - ~ ) . ] )  (38c) 

In each case the right-hand side is the expectation of a polynomial in ~,/3, 7, 
and 3 with nonnegative coefficients: By Theorem 2.4, these expectations are 
nonnegative. Q E D  

Corollary 2.4 (Proof). As noted by Lebowitz, (15~ Corollary 2.4 is a 
special case of Corollary 2.3: 

0 >. (q~qst~) - (q~qs)(te) = V 2  ~hs ~hk (cry) Q E D  (39) 

Corol lary 2.5 (Proof) .  Corollary 2.5 is obtained by symmetrizing the 
special case 

(htsqkq~) -- (ht j ) (qkqz)  <~ 0 (40) 

of Corollary 2.3. Q E D  
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It is pleasant to see that all these results essentially follow from symmetry 
arguments and the fact that the integral of  a positive function is positive. 

3. D I S C U S S I O N  

We begin this section by discussing the restrictions in the hypotheses of 
the theorems of Section 2. We point out some single-spin measures not covered 
by the hypotheses of all these theorems for which the conclusions follow by a 
limiting procedure, the most notable being the restriction of Lebesgue measure 
to some finite interval [ - b ,  b]. Finally, as an application of the methods and 
results of Section 2, we outline the extension of the work of van Beijeren (1~ 
on sharp phase interface to models with arbitrary (even) single-spin measure. 

Let us turn now to the hypotheses of the theorems of the preceding 
section. As Theorems 2.1, 2.2, and Corollary 2.1 have been widely ana- 
lyzed, (v'9,14,zg'2~ we shall not comment on them here. 

The hypotheses of Theorem 2.3 and Corollary 2.2 are somewhat unusual 
in that the single-spin measure is arbitrary while the Hamiltonian is restricted 
to a pair interaction. To see that this restriction is valid, note that Corollary 
2.2 fails for a spin-�89 model with three sites {1, 2, 3} = A and cubic Hamiltonian 

H = -ala2a3 + h~8, h > 0 (41) 

[We find that (az) and (a2) both vanish, but 

(a1r = - t anh( l ) t anh(h)  < 0 

in contrast to (13).] 
The hypotheses of Theorem 2.4 and its corollaries, Corollaries 2.3-2.5, 

contain restrictions both on the Hamiltonian and on the single-spin measure. 
Example 7.3 of Ref. 14 shows that the restriction of the Hamiltonian to pair 
interactions is needed. However, the constraint on the single-spin measure is 
more severe than required. To carry through the proof, we needed a certain 
polynomial R(~ z,/32, 72, 32) to be nonnegative. The hypotheses of the theorem 
ensured this by causing R to have positive coefficients, but R /> 0 clearly 
follows from weaker assumptions. Theorem 2.4 is studied from this viewpoint 
in Appendix A of Ref. 22. Additionally, Ellis and Newman (6~ have recently 
derived the elegant criterion that Theorem 2.4 and its corollaries hold provided 
P is an even function with a first derivative that is convex on [0, oo). It is also 
valid for single-spin measures obtained by a limiting process from those 
explicitly permitted. For example, Lebesgue measure restricted to the finite 
interval [ - b ,  b] is given as the limit 

1 exp[ -  (cr/b):"] dcr (42) 
2"b Xt-b,bl(or) dcr = l im  f• exp[ -  (s/b) 2"1 (Is 
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of  measures for which Theorem 2.4 holds. Note further that the spin-�89 
(Bernoulli) measure may be recovered from the continuous measures 
exp[ -P(e ) ]  de as the limit 

]ina { e x p [ - q ( e  2 -  1) 2] d a / f  R exp[ -q(s  2 -  1) 2] ds) (43) 

However, some constraint on the single-spin measure is necessary. For  ex- 
ample, Corollary 2.5 fails for a one-site model with zero Hamiltonian having 
single-spin measure 

since 

a3(e + 1) + (1 - 2a)3(a) + a~(e - 1), 0 < a < ~- (44) 

(a  ~) - 3(rr2) 2 = 2a(l - 6a) > 0 (45) 

in contrast to (18). It also fails for a one-site model having single-spin measure 
exp[ -P(a ) ]  de, where 

1 O < a <  P(a) = qa2(a -- 1)2(a + 1) 2 q- a 2 log - 1 + log 1 -- 2a' 

(46) 

and q is sufficiently large, (2~ because as q --+ m, this measure converges to the 
preceding one. 

We conclude by sketching the extension to models with arbitrary single- 
spin measure of the spin-�89 results of  van Beijeren (1~ on sharp phase interface. 
(Full details of this generalization are given in Ref. 22.) Consider the nearest 
neighbor, isotropic, spin-�89 Ising ferromagnet In in dimension n /> 3 at zero 
external field, and take the inverse temperature fl of  the model larger than the 
critical inverse temperature fl . . . .  1 of  In_~. Van Beijeren shows that if a 
uniform magnetic field h > 0 is applied at the sites in the " t o p "  half of the 
model, and an opposite field ( - h )  at the sites in the " b o t t o m "  half of the 
model, then upon decreasing h to zero, we leave the model in an equilibrium 
state which has a sharp phase boundary: for some c > 0 the magnetization 
( ~ )  is at least c if site i is in the top half of the model and at most - c in the 
bottom half. To establish this, one may combine the method of proof  of  
Theorem 2.2 with Corollary 2.2 to show that the magnetization in the top 
half  of the model is bounded below by the magnetization of  the (n - 1)- 
dimensional nearest neighbor ferromagnet having the same physical param- 
eters (temperature, coupling, and external field). By symmetry, the magnetiza- 
tion in the bottom half of the model is bounded above by the negative of  the 
magnetization of  this (n - 1)-dimensional slice. But for n t> 3, In_~ is 
spontaneously magnetized for fl > tic (limh~0(e,; h) > 0), so this comparison 
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implies that I~ has an equilibrium state with a sharp phase interface at 
sufficiently high reciprocal temperature. 

In rough summary, the sharp phase boundary is a consequence of the 
method of Theorem 2.2, Corollary 2.2, and the spontaneous magnetization 
of In_ 1. As we have seen, Theorem 2.2 and Corollary 2.2 hold for models 
with arbitrary (even) single-spin measure. In Refs. 2 and 22 it is proved that 
nearest neighbor models in dimension at least two whose single-spin measure 
is not the ~-function are spontaneously magnetized at sufficiently large inverse 
temperature/3. Combining these results yields: 

T h e o r e m  3.1. Let (Z ~, H,  v) be the nearest neighbor Ising ferromagnet 
in dimension n /> 3 with Hamiltonian 

~ a t a i + l ~ ,  J > 0 ,  1 = = ( 0  ..... 0 ,1 ,0  ..... 0), (47) H = - J  
i e ; e n  a = 1 I 

n - c t  
c~ 

and v ~ ~. Let m~ be the spontaneous magnetization of the nearest neighbor 
ferromagnet (27~-1, H' ,  v) in dimension n -  1 with the same single-spin 
measure v and coupling J: 

~ ' '  (48) H '  = - - J  O'[,O'F+I, ~, 

Then for any inverse temperature/3 there exists an equilibrium state < )Ps 
of (2~ ~, H, v) such that 

(a , )es  >~ ms V i =  (il .... , i~)e~_~: il >1 0 
(49) 

(a i )es  <~ - m ~  Vi = (il ..... in) e Z ~ :  il < 0 

Since the spontaneous magnetization rn s > 0 if the reciprocal temperature/3 
is sufficiently large, the state ( )es has a sharp phase separation when/3 is 
large. 
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